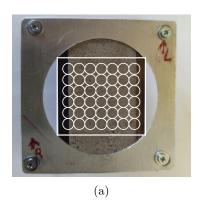
Homogeneity and thickness measurement of large-area targets for the (n, cp) reaction cross section studied at n TOF CERN

K. Stasiak¹, J. Perkowski¹, A. Gawlik-Ramiega¹, D. Renisch^{2,3}, and C. Düllmann^{2,3,4}


¹ University of Lodz, Lodz, Poland

² Johannes Gutenberg University Mainz, Mainz, Germany

³ Helmholtz Institute Mainz, Germany and

⁴ GSI-Helmholtzzentrum für Schwerionenforschung GmbH Darmstadt, Germany

In preparation for neutron-induced reaction cross section measurements of the ³⁹K(n, cp) channel at the n_TOF facility [1], the thickness and homogeneity of a potassium iodide (KI) target were evaluated using a 207 Bi electron source. 39 K is a component of sodium-potassium (NaK) alloys, which are proposed as coolants in experimental fast neutron nuclear reactors [2,3]. Accurate cross section data for 39 K(n, cp) reactions are therefore crucial for reactor design and safety analyses in these advanced systems. The KI sample was produced at the department of chemistry, TRIGA site, Johannes-Gutenberg University Mainz. KI was deposited on a 25 µm thick titanium (Ti) backing. The area of Ti foil is 4×7 cm², the deposition area is 3×6 cm². The material was printed by Drop-on-Demand printing technique [4], twice on the surface, in total about 15000 drops, 20 nL each were placed. It gives 166 mg of KI, which corresponds to a mass per area of 8.4 mg/cm² on average. The thickness of the Ti foil precluded the use of alpha particles due to their limited penetration range. Instead, collimated electrons from the ²⁰⁷Bi EC source of 0.5 cm diameter were used to probe the target material using energy loss measurements. 207 Bi undergoes electron capture decay, forming an excited ²⁰⁷Pb nucleus, which then emits internal conversion electrons (ICE). The most intense emitted electrons have an energy of 976 keV [5]. The energy loss of such an electron in a KI sample of thickness of a few mg/cm² is of a few keV [6], which is sufficient to be measured with a silicon detector. The thickness was probed at 42 points on the target, as can be seen in Fig. 1a. An example energy loss comparison between a titanium-only sample and one with KI can be seen in Fig. 1b.

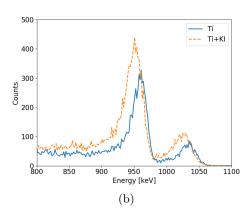


FIG. 1: (a) Potassium iodide (KI) target on a titanium (Ti) backing placed in a bracket for stability. White circles represent the ²⁰⁷Bi source positions at which the thickness was measured.

(b) An example spectra for a Ti-only target and for KI on Ti.

- [1] J. Perkowski & A. Gawlik-Ramiega, CERN-INTC-2025-023 (2025).
- [2] A. Ibarra et al., Fusion Science and Technology 66 (2014) 252.
- [3] F. Arbeiter et al., Nuclear Materials and Energy 9 (2016)59
- [4] D. Renisch et al., EPJ Web Conference 285, 04001 (2023).
- [5] Nuclear Data Sheets 112, 707 (2011)
- [6] M.J. Berger et al., ESTAR Database, NIST (2005), http://physics.nist.gov/Star.